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Abstract: - In this paper, the problem of finite frequency H- /H∞ control for singularly perturbed systems based on 
GKYP lemma is studied. The objective of the H- /H∞ control problem is to design a controller such that the 
resulting closed-loop system is stable, and the transfer function is bounded real for singularly perturbed systems at 
low and high frequencies. By employing GKYP lemma, respectively, on the slow and fast subsystem, the problems 
of the reduced order subsystems are solved in terms of linear matrix inequalities (LMIs). The two frequency- scale 
solution for the full-order SPS constructed in this paper uses the solutions of two well-defined lower-order 
problems, and therefore it is numerically better conditioned. An iterative algorithm for the computation of the BMIs 
is presented. The effectiveness of the proposed method is demonstrated through comparing with positive real 
control design method. 
 
Keywords:  - Singularly Perturbed Systems (SPS); H- /H∞ control; finite frequency; Kalman-Yakubovich-Popov 
                     (KYP) lemma; linear matrix inequalities (LMI). 
 

 
 1 Introduction  
The problem of control design for singularly perturbed 
systems has attracted the attention of many researchers 
for many years [1-2]. Singularly perturbed systems also 
known as multiple time-scale dynamic systems 
normally occur due to the presence of small "parasitic" 
parameters, typically small time constants, masses, etc. 
In state space, such systems are commonly modeled 
using the mathematical framework of singular 
perturbations, with a small parameter, say, determining 
the degree of separation between the "slow" and "fast" 
modes of the system [3]. 
 
On the other hand, the concept of H- /H∞ has played an 
important role in control and system theory [4-5-6]. In 
the past years, the problem of H- /H∞ control has 
received much attention [7-8]. Oloomi and Sawan [7] 
studied the suboptimal matching problem for SISO two 
frequency scale systems and obtained a suboptimal H∞ 
solution through solving the model matching problems 
for low and high frequency models.  
 
One of the most fundamental results relation frequency 
domain and time domain, is the Kalman-Yakubovič-
Popov (KYP) [9-10-11] lemma, which establishes the 
equivalence between a frequency domain inequalities 
(FDI) and a linear matrix inequality (LMI). As the 
extension of the standard KYP lemma, the generalized 
KYP (GKYP) lemma is introduced by Iwasaki et al. 

[12-13], that provides an LMI characterization of 
frequency domain inequalities in finite frequency range. 
 
Mei et al [14] studied for H∞ Control of SPS by a 
GKYP lemma based approach. [3] Studied the finite 
frequency strictly positive real (FFSPR) control for 
singularly perturbed systems, and obtained the 
sufficient conditions which were given in terms of 
nonlinear matrix inequalities 
 
In this paper, we consider the H-/H∞ control problem 
for SPS in finite frequency ranges, and design a 
controller which is also singularly perturbed to satisfy 
different frequency-domain specifications. By 
introducing H- index and H∞ norm performan ce of 
transfer function matrices at different frequency band, 
such that SPS has good dynamic, good robustness and 
good sensor noise rejection. Finally, the comparison 
with H-/H∞ Control in the example will show the 
superiority of our results. 
 
This study is organized as follows: In Section 2 we give 
the problem formulation and some necessary 
preliminaries are presented. In section 3 presents FFH-
/H∞ property analysis for slow and fast subsystem of 
SPS. In Section 4, simulation example is shown. And 
finally the paper is concluded by brief conclusion in 
Section 5. 
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Notation: For a matrix M, its transpose and complex 
conjugate transpose are denoted by TM  and ∗M , 
respectively. 0M and 0M  denote positive 
definiteness and negative definiteness. 
 
 
 2 Problem Formulations 
Consider a Singularly perturbed system (SPS) described 
by: 
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Where 2,2, ℜ∈AEε  , 1,2ℜ∈B , 2,1ℜ∈C , 1,1ℜ∈D , 

, 1,2)( ℜ∈tX  is a state vector, 
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ε  is a small perturbation parameter. 
Decomposing the SPS (1), we get the slow and fast 
subsystems as follows: 
 
-  Slow subsystem 
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-  Fast subsystem 
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1,1ℜ∈sX  is the state vector of  the slow subsystem 
1,1ℜ∈fX is the state vector of the fast subsystem 

sU  is the Control of the slow subsystem 
fU  is the Control of the fast subsystem 

 
For SPS, the transfer function can be written as sum of 
two transfer function matrices in two different 
frequency scales, s  and sε , corresponding to the time 

scales t  and ε
t  [Luigi Glielmo] [15-16], that is 
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Where  
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Here the transfer functions )(sGs and )( pG f are called 

the low-frequency and high-frequency approximations 
of ),( εsG . 
 
 
 
Definition 

- we define the finite frequency H- index [Chen, 
Patton, and Liu(1996) and Chen and Patton 
(1999)] and the finite frequency H∞ norm[T 
Iwasika] as 

( ) lsG ωωβ ≤∀
−
)(inf  

( ) hsG ωωγ ≥∀
∞
)(sup  

         where  0,0  γβ  are  scalar, and lω , hω  
represent the low and high frequency. 
 
Now the finite frequency H- /H∞ for SPS (1) to be 
addressed in this paper can be formulated as follows:  
for a given SPS (1), find a state feedback controller  
 

              cUXKU +=                                             
(7) 
Where K is the state feedback gain vector and cU is the 
compensation control. 
Such that, for sufficient small parameter ε  , the closed- 
loop System 
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is stable and finite frequency bounded real.  
Where BKAAc += , DKCCc +=  
Lemma. Let complex matrices A, B, a Hermitian matrix 
Θ  and a positive scalar lω be given. Then the following 
statements are equivalent: 
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Where: 
{ }lll AIj ωωωωω ≤≠−ℜ∈=ΩΩ∈ ,0)det(/:,  

ii) There exist nn×  Hermitian matrices lP  and lQ     
      satisfying 0lQ and 
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The finite frequency condition in lemma can be 
generalized to the case where the frequency range is 
any interval of the form hωω ≥  , [17]. 
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Corollary. Let complex matrices A, B, a Hermitian 
matrix Θ   and a positive scalar hω  be given. Then the 
following statements are equivalent: 
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ii) There exist nn×  Hermitian matrices hP  and hQ      
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The Schur complement 

The Schur complement converts a class of convex 
nonlinear inequalities that appears regularly in control 
problems to an LMI. We have [18] 
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Where Q and R are symmetric 
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The matrix TSSRQ 1−− is called the schur complement 
of R in M.  
Then:  
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 3 H- /H∞ Control of singularly 
perturbed system (SPS) 

 
3.1 The slow subsystem and the associated FFH- 
control in the low frequency domain 
 
For slow subsystem (2), considering the following 
problem: find sK , such that for a given lω , the closed-
loop subsystem 
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is stable and FF H-.  
Where sc KBAA 000 += , sc KDCC 000 += , 
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The following theorem gives a sufficient condition for 
the slow subsystem (15) to be internally stable and FF 
H- . 
Theorem1. For given lω , if there exist matrices 
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Then closed-loop system (15) is internally stable and 
FFH-. Theorem gives a sufficient condition for the 
existence of static feedback gain that achieves internally 
stable and FFH- property for the transfer function of the 
closed-loop system.  
 

- Definition of H- index 
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It is could be rewritten the following form 
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WSEAS TRANSACTIONS on SYSTEMS and CONTROL A. Zouhri, M. Ben Yakhlef, I. Boumhidi

E-ISSN: 2224-2856 304 Volume 9, 2014



 

0
00 2

0000

00000
2

00














+−−
−−

+














−








∗

IDDCD
DCCC

I
BA

QP
PQ

I
BA

T
c

T

T
cc

T
càc

lll

llc

βω

 

02
0000

0000

00

000
2

0000















+−−
−−

+



















−
∗

+−+++−

IDDCD
DCCC

BQB

BPBQAQAPPAAQA

T
c

T

T
cc

T
c

l
T

ll
T
cllcll

T
ccl

T
c

β

ω

 

0
2

0000

0000000
2

0000





















+−−
∗

−+−−+++−

IDDBQB

DCBPBQACCQAPPAAQA

T
l

T

T
cll

T
cc

T
cllcll

T
ccl

T
c

β

ω

      (23) 
   
The condition is given in terms of BMIS which is 
presented like this: 
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3.2 The fast subsystem and the associated FFH∞ 
control in the high frequency domain 
 
For fast subsystem (3), considering the following 
problem: find fK , such that for a given hω , the closed-
loop subsystem 
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The following theorem gives a sufficient condition for 
the fast subsystem (26) to be internally stable and 
FFH∞. 
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Then closed-loop system (26) is internally stable and 
FFH∞. 
 

- Definition of H∞ norm 

     ( ) hsG ωωγ ≥∀
∞
)(sup           

(29) 
 
Equivalent to     IjGjG ff

2)()( γωω ×∗                      (30) 

 
i.e.        

IDBAIjCDBAIjC 2
22

1
22222

1
222 ))(())(( γωω +−+− −∗−

                                                                                            (31) 
 
It is could be rewritten the following form 
 

0)(
00

0
0

)( 2
1

2222
2

222
1

22












 −
















−



















 − −∗∗−

I
BAIj

I
DC

I
I

I
DC

I
BAIj ω

γ
ω

 
                                                                                            (32) 
Then  

              02
2222

2222














−
=Θ

IDDCD
DCCC

TT

TT

h γ
                      (33) 

                                
(28) is equivalent to 
 

0
2

2222

222222
2





















−+
∗

+++−++

IDDBQB

DCBPBQACCQAPPAAQA

T
h

T

T
hh

T
cf

T
hhcfhh

T
cfcfh

T
cf

γ

ω

 
(34) 

 

0

22

2

f

h
T

h
T
cfcfh

T
cf

BQB

BQAAQA

Π+



















∗

                     (35) 

 

[ ] 02
1

2
BQAQQ

QB
QA

hcfhh
h

T
h

T
cf

f
−












+Π               (36) 

 
Using Schur complementary Lemma, Then we have 
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By using Schur complement Lemma, we can obtain 
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Resolution by approach LMI : 
 

- The resolution of the previous problem can be 
obtained by the resolution of a problem of 
programming by LMI. 

 
Step1. Choose an initial fK ; solve the following 
convex optimization problem: 
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                                                                                            (43) 
are hold. If 0≤µ  , then problem is solved; otherwise go 
to step 2. 
Step2. With the obtained matrices hP  hQ , hX , solve the 
above optimization with respect to sK . Again if 0≤µ , 
the problem is solved, otherwise, go to Step 1. 
 
Assuming, for the moment, that we have successfully 
designed sK and fK a composite controller is formed 
as: 
             [ ]fs KKK =                                                      (44) 
 
It follows from (15), (26) and previous lemma that, for 
sufficient small ε  , cUXKU +=  is an internally 
stabilizing controller and preserved FFH-/H∞ at low 
and high frequencies. 
 

4  Simulation 
          In this section a numerical example is given to 
demonstrate the effectiveness of the proposed method. 
Consider the singularly perturbed system: 
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(45) 
 
Using Matlab LMI control toolbox, 
 

- A solution to ((24-25) and (42-43)) is obtained 
as follows: 

 
For  3=lω , following theorem 1, one get  

         -20.3668=sK , 0.0053=lQ  ,  
       -0.5185=lP  ,  20.4428=lX  
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Fig 1 singular value of the slow subsystem  
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For 100=hω , following theorem 2, one get 
        1.0125=fK  , 1.2051 =hQ  ,   
        0.6266=hP , 2.9441=hX  
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Fig 2 singular value of the fast subsystem 
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The composite state feedback controller can be 

obtained:                 

[ ] 1.012520.3668-=K  
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Fig 3. States response of Xs (H-) and Xs (Positive Real) 
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Fig 4. States response  of  Xf (Hinfini) and Xf (Positive Real) 

 

A comparison of state responses between H-/H∞ and 
Positive Real control are shown in Figs. 3 and 4, 
respectively.  It can be observed state responses are 
stabilized by the controller designed via the LMI 
approach to the finite frequency H-/H∞ control of SPS 
better than the real positive control. 
 

5  Conclusion 
In this paper, we have studied the problem finite 
frequency H-/H∞ control for singularly perturbed 
systems (SPS) by using the generalized KYP lemma. 
The sufficient conditions for the existence of an H-/H∞ 

control are derived based on generalized KYP lemma 
and given in terms of linear matrix inequalities (LMIs). 
A controller which is singularly perturbed is also 
explicated constructed through designing its fast and 
slow parts. The result is applicable to deal with the H-
/H∞ control problem in different frequency ranges to 
make system better dynamic, a numerical example has 
been given to illustrate the effectiveness of the 
proposed method. 
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