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Abstract: - In this paper, the problem of finite frequency H- /Hoo control for singularly perturbed systems based on
GKYP lemma is studied. The objective of the H- /Ho control problem is to design a controller such that the
resulting closed-loop system is stable, and the transfer function is bounded real for singularly perturbed systems at
low and high frequencies. By employing GKY P lemma, respectively, on the dow and fast subsystem, the problems
of the reduced order subsystems are solved in terms of linear matrix inequalities (LMIs). The two frequency- scale
solution for the full-order SPS constructed in this paper uses the solutions of two well-defined |lower-order
problems, and therefore it is numerically better conditioned. An iterative algorithm for the computation of the BMIs
is presented. The effectiveness of the proposed method is demonstrated through comparing with positive real

control design method.
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(KYP) lemma; linear matrix inequalities (LMI).

1 Introduction

The problem of control design for singularly perturbed
systems has attracted the attention of many researchers
for many years [1-2]. Singularly perturbed systems also
known as multiple time-scae dynamic systems
normally occur due to the presence of small "parasitic”
parameters, typically small time constants, masses, etc.
In state space, such systems are commonly modeled
using the mathematica framework of singular
perturbations, with a small parameter, say, determining
the degree of separation between the "dow" and "fast"
modes of the system [3].

On the other hand, the concept of H- /Hew has played an
important role in control and system theory [4-5-6]. In
the past years, the problem of H- /Heoo control has
received much attention [7-8]. Oloomi and Sawan [7]
studied the suboptimal matching problem for SISO two
frequency scale systems and obtained a suboptimal Ho

solution through solving the model matching problems
for low and high frequency models.

One of the most fundamental results relation frequency
domain and time domain, is the Kalman-Yakubovi¢-
Popov (KYP) [9-10-11] lemma, which establishes the
equivalence between a frequency domain inequalities
(FDI) and a linear matrix inequality (LMI). As the
extension of the standard KY P lemma, the generalized
KYP (GKYP) lemma is introduced by lwasaki et al.
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[12-13], that provides an LMI characterization of
frequency domain inequalitiesin finite frequency range.

Mei et al [14] studied for kb Control of SPS by a
GKYP lemma based approach. [3] Studied the finite
frequency strictly positive real (FFSPR) control for
singularly perturbed systems, and obtained the
sufficient conditions which were given in terms of
nonlinear matrix inequalities

In this paper, we consider the H-/Ho control problem
for SPS in finite frequency ranges, and design a
controller which is also singularly perturbed to satisfy
different  frequency-domain  specifications. By
introducing H- index and kb norm performan ce of
transfer function matrices at different frequency band,
such that SPS has good dynamic, good robustness and
good sensor noise reection. Finaly, the comparison
with H-/Heo Control in the example will show the
superiority of our results.

This study is organized as follows: In Section 2 we give
the problem formulation and some nhecessary
preliminaries are presented. In section 3 presents FFH-
/Hoo property analysis for slow and fast subsystem of
SPS. In Section 4, simulation example is shown. And
finally the paper is concluded by brief conclusion in
Section 5.
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Notation: For a matrix M, its transpose and complex
conjugate transpose are denoted by MT andM*,
respectively. M >=0and M <0 denote positive
definiteness and negative definiteness.

2 Problem Formulations
Consider a Singularly perturbed system (SPS) described

by:

{ E, X(t) = AX () + BU(t) "
Y(t) = CX (t) + DU (t)

WhereE,,Ac R** ,Be®®', Ce®*?, Dew™,
,X(t)eR?! is a state vector, U(t) e R** is a control
input andY (t) e R is an output.

XU o [tw O] \_[Au
X2]" 70 10 el Ay

{Bl] c=[c1 c2]

B2

& isasmal perturbation parameter.
Decomposing the SPS (1), we get the slow and fast
subsystems as follows:

X

Az }
Az

B

- Slow subsystem
Xg=AgXs+BoUyg ?
YS :COXS+DOUS

- Fast subsystem
X =AypXs +B,Uy
Yf :C2Xf +D2Uf

©)

Where

Ao = A11—A&2A£21A211 Bo =Bi—Ap Ailez
Fo=Fi—Ap Aizl Fa s Co=C1-C; A£21A21
D,=D-C,A%B, ,D,=D-D,

X, e R isthe state vector of the Slow subsystem
X e R*isthe state vector of the fast subsystem

U, isthe Control of the dow subsystem
U ; isthe Control of the fast subsystem

For SPS, the transfer function can be written as sum of
two transfer function matrices in two different
frequency scales, s andes, corresponding to the time

scalest and % [Luigi Glielmo] [15-16], that is

G(9) = Gg(5) + Gy (£9) €)
Where
G4 () =Co(sl —Ag) "By + Dy ®)
G (¢9) =G (p)=Cy(pl — Ap) B, + D, (6)
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Here the transfer functions G.(s) and G; (p) are called

the low-frequency and high-frequency approximations
of G(s, &) .

Definition
- we define the finite frequency H- index [Chen,
Patton, and Liu(1996) and Chen and Patton
(1999)] and the finite frequency Ho norm[T
Iwasika] as

inf(|GM)| ) =8 Vo<

s 6@, )<r Vo= o
where p-0, y>=0 ae scdar, ando, o,
represent the low and high frequency.

Now the finite frequency H- /Hwo for SPS (1) to be
addressed in this paper can be formulated as follows:
for agiven SPS (1), find a state feedback controller

U=KX+U,

(7)
WhereK isthe state feedback gain vector and U is the

compensation control.
Such that, for sufficient small parameter ¢ , the closed-
loop System

E, X(t) = A X(t)+ BU(t)

(8)
Y(t) =C X (t)+ DU, (t)

is stable and finite frequency bounded real.
Where A, = A+BK , C, =C+DK

Lemma. Let complex matrices A, B, a Hermitian matrix
©® and apositive scalar o, be given. Then the following
statements are equivalent:
. -1 * . -1

) {(jwl—lA) B} o l:(ja)l—IA) B:|<O ©
Where:
weQ),Q = {a) e R/det(jol — A) = 0|a)| < o }
ii) There exist NXN Hermitian matrices B, and Q

satisfying Q, > 0 and

Tl el

2 +0, <0
Il 0| | R QI 0
The finite frequency condition in lemma can be
generalized to the case where the frequency range is

any interval of the form |o| > @, , [17].

(10)
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Corollary. Let complex matrices A, B, a Hermitian

matrix ® and a positive scalar «,, be given. Then the
following statements are equival ent:

. ARl . -1
N [(]a)l—lA) B} G){(le—lA) B]d) a1
Where:

weQ,,Q, = {a)eiR/det(ja)l —A)¢O,|a)|2a)h}

i) Thereexist NxN Hermitian matrices R, and Q,
satisfying Q,, = 0and

TR el e
| 0 Ph _a)th | 0

The Schur complement

(12)

The Schur complement converts a class of convex
nonlinear inequalities that appears regularly in control
problemsto an LMI. We have [18]

S
2 g

Or
Q S
{ST R}>O

Where Q and R are symmetric

R<0
< {Q—SRlsT <0 13)
R>0

< {Q— SRS+ 0 (14)

Pr oof
Q S
Weput M =
]
Set U =R1ST

I UT|fQ S| 0] |[Q+U+UTST+UTRU S+U'R
0 I ||ST RJU I S'+RU R

S+UTR=S-R'R=0
V+UTST =RIST — R8T =0
Q+UTRU =Q-R!RRIS"T =Q-R1sT

Is obtained
Q-R1s" 0
0 R

The matrix Q—SR!ST is called the schur complement

of Rin M.
Then:
M isnégative = R0
0 Q-SRS" <0
R-0

M is positive <
P {Q— SR'S" -0
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3 H- /Ho Control of
perturbed system (SPS)

singularly

3.1 The dlow subsystem and the associated FFH-
control in the low frequency domain

For dow subsystem (2), considering the following
problem: findKy, such that for a given e, , the closed-

loop subsystem

{Xs(t):AOCX(tHBoUsc(t) (15)

Ys =Coc X(t) + DU & (1)

is stable and FF H-.

Where AOC = 'AO + BOKS’ COC =C0 + DOKS'

U sc(t) =Ug— sts(t)

The following theorem gives a sufficient condition for

the dow subsystem (15) to be internally stable and FF

H-.

Theoreml. For givenw,, if there exist matrices

R=R", @ ~0,and X, >0 such that the following

matrix equalities satisfied:
Age X; + X Age <0

AOC BO " _QI PI AOc Ba +®|-<O
I 0 P o’Qll I o

Then closed-loop system (15) is internally stable and
FFH-. Theorem gives a sufficient condition for the
existence of static feedback gain that achieves internally
stable and FFH- property for the transfer function of the
closed-loop system.

(16)

(17)

- Definition of H- index

inf(|GM)|_) > 8 Vo<

(18)
Equivalentto G (jw)xG(jw) > B2 (19)
i.e
(Co(jel = Ag) "By +Dg)" (Co(jel — Ag) "By +Dg) = Bl
(20)

It is could be rewritten the following form

(il - A) '8y [[Co Do[-1 0 Cy Do][(jel - A) By |
I 0o 1|0 pgajo I [
(21)
Then

-Cclc -C/D
|_|: 0“0 0o*~0 (22)

<0
-DJC, —DgD0+ﬂ2|}
(17) isequivalent to
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A B][-Q R 1[Ac B [-clc, -CLb, <;I;'lr;anooclo&d-loopsystem (26) isinternaly stable and
L1 0oJLR Q1 0] |[-DjCy -DgDy+ A '

i - Définition of Hoo norm
_A\-)chIAOCJrAJCF? +F}AOC*‘CQZQI _A:)chIBOJr RBO

+ _CgcCOc _CchO <0
_Blgs, | L-DiGe -DiDy+ A sup( G|, ) =<7 V|o|=an
. (29)
__A(-)I-CQIAOC"'A\-JI-CPI"'PIAUC'*"QZQI_CgcCOc _A(‘)FCQIBO"'PIBO_C(-)FCDO EqUIvaIent tO G?(Jw)XGf (](0)‘<}/2| (30)
<0
. ~ByQ By ~ Dy D + 41 i.e
23) (Cojol = Ap) ™ By +D,)" (Co(jol - Ap) "By +D,) < 7%l
(31)
The condition is given in terms of BMIS which is
presented like this: It is could be rewritten the following form
min{es (ol - A '8, TC, D] 0 e 0ol - Ao By
Sut;]gctto | 0 1]lo 4o 1 I
Age X + X Agg < ] (24) (32
T T 2 T T T Then
_AOCQAOC+AOCPI+RADC+Q4Q_COCCOC_/“I _AOCQBO+F7\BO_COCD0 C;—CZ C;'D2
<0 h = T T 2 < O (33)
D;C, Dy D, -7l

‘BngBo‘DgDo +,52| - ul

(28) isequivalent to

25
2 At QhAs + AP+ RiAy - 05Qy +C3C, AT QiB, + BB, +C; D,
=<0
3.2 The.fast supsystem and the asso_ciated FFHoo ) BIQ,B, + DID, - I
control in the high frequency domain
For fast subsystem (3), considering the following (34)
problem: find K, such that for a givene,,, the closed- T ToB
loop subsystem At QnAs  AxQnB;
{5Xf(t):Acfo(t)+B2Ufc(t) (26) +I <0 (35)
Y =Cy X (t)+D,U o (1) , BB,
Is stable and FFHw.
WhereAcf:A22+Bsz,Ccf :C2+D2Kf, /A{:I'
f Qh -1 36
U =U¢ —K¢X¢(t) f +|:Bth:|Qh [QhAcf QhBZ]'<O (36)
The following theorem gives a sufficient condition for ~ Using Schur complementary Lemma, Then we have
the fast subsystem (26) to be internally stable and
FFHoo. TQ
Iy {Q?Qﬂ -0 (37)
Theorem2. For givenw,, if there exist matrices * _th
P,=R',Q,>0, and X, >0 such that the following
matrix equalities satisfied: Where
Agf P+ P Ay ~0;Q, +C3C, P.B, +C; D,
AL X+ X, A <0 (27)
: Iy =
Ar Bal |~ Qn E“ As B +©, <0 (28) D; D, -7l
Il 0 P, @fQull 1 0 *
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Then
_'A{?rfph"'PhAtf —a)r?QtH'C;Cz Pth+C;D2 A;Tth_
* D;D,-7%l BjQ, -0
* * _Qh
' (39
C,
¥, +|D; [ Yc, D, 0]<0 (39)
0

By using Schur complement Lemma, we can obtain

o
vy |D;
f 2 11<0 (40)
0
#* -1
(AR +RAs -02Q, RB, AYQ]
Where * -7 BQy|
* * _Qh
Then (38) equivalent to
A;R +RA; —/Q, RB, AiQ, C]
* - 72| B;Qh D; <0
* * -Q, 0
* * * —1
(41)

Resolution by approach LMI :

- The resolution of the previous problem can be
obtained by the resolution of a problem of
programming by LMI.

Stepl. Choose an initial K;; solve the following
convex optimization problem:

min{.}
P Qn. Xn
Subject to:
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A X+ X Ay <l (42
AG R, + R Ay — 0iQy — BB, Af Q c
* ~/fl-d BJQ, D |4
* ® -Q,—u 0
* * * —1 —yl
43
arehold. If <0 ,then problem is solved; otherwise go

to step 2.
Step2. With the obtained matricesP, Q,, X,,, solve the

above optimization with respect to K. Again if z<0,
the problem is solved, otherwise, go to Step 1.

Assuming, for the moment, that we have successfully
designed K and K a composite controller is formed

as

K=|Ks Kg] (44)

It follows from (15), (26) and previous lemma that, for
sufficient small ¢, U=KX+U, is an internaly

stabilizing controller and preserved FFH-/Hoo at low
and high frequencies.

4 Simulation

In this section a numerical example is given to
demonstrate the effectiveness of the proposed method.
Consider the singularly perturbed system:

. {2 1} { 2 }
E. X(t)= X + U
-1 -2 -05
{ Y=[ 1]X(t)-0.5U
(45)

Using Matlab LMI control toolbox,

- A solution to ((24-25) and (42-43)) is obtained
asfollows:

For o, =3, following theorem 1, one get

K¢ =-20.3668, Q =0.0053,
P =-05185, X, =20.4428

—— sart(eig(Gs*(w) Gs(w)

I
£

Fig 1 singular value of the slow subsystem

p=00332 , inf(sort(eig(G:(jm)Gy(je))=0.0586
p=int(|ce)_)
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For », =100, following theorem 2, one get
K; =1.0125 , Q, =1.2051 ,
P, =0.6266, X, = 2.9441

ssssss

o2
——sqrt (eig(GF*(w) Gf(jw)))

o249 =

Fig 2 singular value of the fast subsystem

y=02500 , suplsart(eig(G; (jm) Gy (jo))=0.2499

sup( [G(9)],.) <~
The composite state feedback controller can be
obtained:

K=[-203668 1.0125]

14
——H-Control
12 — Real posttive Control

States response (p.u)

! T e S ! L I
02 03 o4 05 07 [ 09 1

06
Time (sec)

Fig 3. States response of Xs (H-) and Xs (Positive Real)

— Hinfini Control
~ T ——Real positive Control

[ N | | | | | | 1
0 01 02 03 04 05 08 09 1

08
Time (sec)

Fig 4. Statesresponse  of Xf (Hinfini) and Xf (Positive Real)

A comparison of state responses between H-/Hoo and
Positive Real control are shown in Figs. 3 and 4,
respectively. It can be observed state responses are
stabilized by the controller designed via the LMI
approach to the finite frequency H-/Heo control of SPS
better than the real positive control.

5 Conclusion

In this paper, we have studied the problem finite
freqguency H-/Hoo control for singularly perturbed
systems (SPS) by using the generalized KYP lemma.
The sufficient conditions for the existence of an H-/Ho
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control are derived based on generalized KYP lemma
and given in terms of linear matrix inequalities (LMIs).
A controller which is singularly perturbed is aso
explicated constructed through designing its fast and
slow parts. The result is applicable to deal with the H-
/Hoo control problem in different frequency ranges to
make system better dynamic, a numerical example has
been given to illustrate the effectiveness of the
proposed method.
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